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Abstract

The aim of this study was to evaluate developmental
changes in thyroid hormone and other key endocrine
hormones/molecular markers produced by testicular
cells, in relation to breed differences in proliferation and
maturation of Sertoli cells and general testicular morpho-
logical development in Meishan (MS) and White
Composite (WC) boars. Blood samples and testes were
collected on days 60, 75, 90 and 105 post coitum (dpc) and
days 1, 7, 14 and 25 post partum (dpp). Testes were
immunostained for thyroid hormone receptor-�1
(THR�1), GATA4, Müllerian-inhibiting substance
(MIS), 17-�-hydroxylase (P450c17) and inhibin subunits
(�, �A, �B). In addition, protein levels were determined
by densitometry. Plasma concentrations of free triiodothy-
ronine (T3) were greater in MS (hyperthyroid) compared
with WC (hypothyroid) boars (P<0·01) during fetal life,
but the reverse was evident postnatally. Elevated levels of
free T3 during fetal life were associated with increased

levels of THR�1, suggesting increased thyroid responsive-
ness of the testis during this time, contrasting with
observations during early postnatal life. Localization pat-
terns of THR�1, MIS, GATA4 and the inhibin subunits
were consistent with previous studies. MIS protein levels
declined more rapidly (P<0·001) in MS compared
with WC Sertoli cells postnatally, consistent with earlier
maturation of Sertoli cells as indicated by our previous
study. In this study, transient neonatal hyperthyroidism in
MS boars during late gestation was associated with a
decline in proliferation and early maturation of Sertoli
cells, followed by early onset of puberty in this breed.
These observations indicate a possible role for thyroid
hormone in the modification of Sertoli cell development,
thereby influencing growth and differentiation of the testis
in pigs.
Journal of Endocrinology (2003) 178, 405–416

Introduction

A vast array of endocrine and molecular events regulate
growth and development; control of testicular develop-
ment is no exception. Differential timing of Sertoli cell
maturation appears to determine the full complement of
Sertoli cells in the boar by regulating the period of
mitogenesis (McCoard et al. 2003 – companion paper).
However, the endocrine and/or molecular mechanisms
involved in regulation of Sertoli cell maturation and the
period of mitogenesis are poorly understood.

Gonadotropins have been implicated in regulating
Sertoli cell proliferation (rodents: Davies 1971, Griswold
et al. 1977, Orth 1984, Meachem et al. 1996; monkeys:
Marshall & Plant 1996) and Sertoli cell maturation
(Griswold 1993). However in boars, plasma follicle-
stimulating-hormone (FSH) concentrations are not associ-
ated with Sertoli cell proliferation during fetal and neonatal
life (McCoard et al. 2003 – companion paper), the

magnitude of the neonatal increase in FSH is not related to
adult testicular size (Ford et al. 2001), and the increase in
FSH secretion following unilateral castration has minimal
effect on Sertoli cell proliferation (Lunstra et al. 2003).
These observations indicate that magnitude of FSH
secretion does not play an important role in establishing
the number of Sertoli cells in the boar.

Thyroid hormones also play a role in testicular devel-
opment. Transient neonatal hypothyroidism delays Sertoli
cell maturation in rodents resulting in increased Sertoli cell
number, testicular size and sperm production (Cooke &
Hess 1992, van Haaster et al. 1992, Joyce et al. 1993,
Bunick et al. 1994, De Franca et al. 1996). Similar
associations between thyroid hormones and testicular
development have been observed in rams (Chandrasekhar
et al. 1985, 1986a,b, Fallah-Rad et al. 2001) and cattle
(Majdic et al. 1998). Prepubertal 6-N-propyl-2-thiouracil-
induced hypothyroidism after 7 days post partum (dpp)
does not influence Sertoli cell development in boars
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(Tarn et al. 1998). However, goitrogen treatment during
periods of maximal Sertoli cell proliferation is critical for
maximal responses (Cooke & Hess 1992, Meisami et al.
1992), suggesting that induction of hypothyroidism after 7
dpp may be beyond the critical window of adequate
‘conditioning’ of the Sertoli cell in the boar.

Coupled with the effects on the growth and function of
the testis, differential effects on a wide array of hormones
and molecular markers are also observed following tran-
sient neonatal hypothyroidism. In rodents, these include
prolonged early expression of undifferentiated Sertoli cell
products, Müllerian-inhibiting substance (MIS) and thy-
roid hormone receptor (THR), and delayed expression of
differentiated Sertoli cell products such as androgen-
binding protein, clusterin and inhibin �B (Bunick et al.
1994). Differential expression of these important Sertoli
cell specific genes are also associated with termination of
Sertoli cell proliferation and subsequent maturation in
healthy animals (Tran et al. 1981, Gondos & Berndtson
1993, Pelliniemi et al. 1993). Collectively, these obser-
vations support a potential role for thyroid hormone and
various Sertoli cell specific products in the regulation of
Sertoli cell development. Thus, the aim of this study was
to determine whether developmental changes in thyroid
hormone and other key endocrine hormones/molecular
markers produced by Sertoli cells, are associated with
breed differences in proliferation and maturation of Sertoli
cells in boars.

Materials and Methods

Sample collection and histological methods

Samples were collected and processed from animals
described in the companion paper (McCoard et al. 2003 -
companion paper). Sections were dried overnight onto
glass slides at 37 �C and stained immunohistochemically
for GATA4, MIS, thyroid hormone receptor �1
(THR�1), 17-�-hydroxylase (P450c17), and the inhibin
subunits (inhibin-�, inhibin �A and inhibin �B) the
following day. Immunostaining methods for GATA4 and
MIS (McCoard et al. 2001b) and for P450c17 (McCoard
et al. 2002b) have been described previously. The THR�1
antibody was an anti-THR�1 peptide antibody (1:200:
Santa Cruz Biotechnology, Santa Cruz, CA, USA) raised
against a peptide mapping within the amino terminal half
of the A/B domain of the thyroid hormone receptor �1 of
human origin, as porcine-specific antibodies were not
available. This epitope is 85% identical between pigs
(CAB42095) and humans (NP_000452). Immuno-
localization of THR�1 (Santa Cruz Biotechnology) was
attempted but was unsuccessful. This may be due to low
abundance below the levels of detection in porcine tissue,
or this antibody may not cross-react with porcine tissue.
Porcine-specific antibodies were not available. Antibodies
directed against the inhibin subunits were mouse mono-

clonal anti-human peptide antibodies (1:10; Serotec,
Oxford, Oxon, UK). The inhibin-� subunit antibody
corresponded to residues 1–32 of the 32 kDa �-subunit of
human inhibin, inhibin �B subunit corresponded to
residues 82–114 of human activin B, and the inhibin �A
subunit corresponded to residues 82–114 of the �A
subunit of 32 kDa human inhibin A and activin A. Serial
sections were also subjected to immunohistochemistry
using commercially available peptides (THR�1-SCB) in
10 times excess of the primary antibodies, or non-immune
serum (inhibin antibodies) to confirm the specificity of the
antibodies. In addition, absence of the primary antibodies
was used to determine non-specific binding.

Slides were deparaffinized in xylene (Sigma; 2�5 min)
and rehydrated through graded ethanol (2�100%,
2�95%, 1�70%). Antigen retrieval was achieved as
previously described (McCoard et al. 2001a). Endogenous
peroxidase activity was quenched by incubating the slides
in 3% hydrogen peroxide for 10 min. Non-specific bind-
ing was minimized by incubation for 20 min in 1% normal
serum. Sections were incubated with respective primary
antibodies for 1 h at room temp (GATA4, MIS, THR�1,
P450c17) or overnight at 4 �C (inhibin subunits) in a
humid chamber. The avidin-biotin immunoperoxidase
system was used to visualize antibody binding (Vectastain
Elite ABC Kit, Vector Laboratories, Inc., Burlingame,
CA, USA). Novared (Vector Labs) was used as the
chromagen. The tissue was visualized using light counter-
staining with hematoxylin, dehydrated, cleared in xylene
and mounted using DPX mounting media (Fluka
Biochemica, Steinheim, Germany). For each protein
evaluated, all slides were subject to identical staining
conditions. Slides were stored at room temperature in the
dark until densitometric analysis.

Slides used for breed comparisons within each age group
were processed together to ensure each slide was treated
identically. The number of slides required to complete
breed comparisons for all age groups was substantial and
thus all the slides could not be processed within the same
assay. Therefore, one testis from a boar at 105 days post
coitum (dpc) was selected as intra- and interassay control
tissue. One section of this tissue was processed with each
assay irrespective of breed, age or protein evaluated, and
was used to correct for interassay and intra-assay variation
in staining intensity as described below.

Densitometric measurements

Average density measurements in the Bioquant Nova
color imaging system (Bioquant Nova 2000 Advanced
Image Analysis, R&M Biometrics, Nashville, TN, USA)
were used to quantify the amount of protein present for
each gene examined using brightfield microscopy as
described previously (McCoard et al. 2002b). Evaluation
of staining intensity in Sertoli (THR�1, MIS, GATA4)
and Leydig (THR�1, P450c17) cells was determined by
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individually tracing seminiferous tubules and regions of
the interstitium containing numerous Leydig cells
respectively.

Blood samples: RIA

Plasma thyroid-stimulating hormone (TSH) concen-
trations were determined by a double antibody RIA (Li
et al. 1996) that used anti-porcine TSH (AFP 284246) and
porcine TSH (AFP10704B) for the reference preparation
and for iodination. The coefficients of variation of two
pools were 1% and 6%. Plasma thyroxine (T4) and
triiodothyronine (T3) concentrations were determined
with RIA kits that used antibody-coated tubes (DSL,
Webster, TX, USA). These assays gave parallel inhibition
curves with increasing volumes of pig plasma or serum
samples. Coefficients of variation ranged from 2% to
9% for four pools that were included in each T4 assay and
from 2% to 16% for these pools in each T3 assay.
Thyroid binding globulin (TBG) concentration was
estimated indirectly by determination of T3 uptake
using T3-antibody-coated tubes (ICN Pharmaceuticals,
Orangeburg, NY, USA). The reference preparation had a
mean activity of 34·7% with a coefficient of variation of
4·5%.

For testosterone in plasma, 200 µl were diethyl ether
extracted and measured by RIA with antisera supplied by
DSL (DSL-4100). Detection of competition was with
[125I]-testosterone and the level of sensitivity of the assay
was 80 pg/ml. The intra-assay coefficient of variation for
testosterone was 8·5%.

Statistical analysis

Differences between breeds in all components estimated
were tested using repeated measures in a mixed model
procedure (SAS 1999). For fetal samples, the model
included fixed effects of breed, age and breed�age
interactions and random effects of litter nested within
breed. For postnatal samples, the model included fixed
effects of breed, age and breed�age interaction, and
random effects of litter. For densitometric data, quadrant
was the repeated measure. Paired comparisons were made
using the Tukey-Kramer procedure. Data were trans-
formed to square roots to adjust for heterogeneity of
variance when required. Data are presented as least square
means and standard errors (hormone data) or inverse least
square means (densitometric data).

Results

Hormone profiles

Triiodothyronine uptake ratio, an estimate of unsaturated
TBG binding capacity, increased from 75 to 90 dpc,

followed by a decline to 105 dpc in both breeds. A second
smaller increase was observed at 1 dpp followed by a steady
decline thereafter in both breeds (Fig. 1). WC boars had
greater T3 uptake than MS boars from 90 dpc throughout
the remainder of the study indicative of either decreased
TBG concentration or greater saturation of normal levels of
TBG secondary to thyroid hormone excess compared with
MS boars (Fig. 1). The T3 uptake ratio was used to correct
total T4 and T3 concentrations providing an estimate of
free T4 and T3 in the circulation.

Plasma concentrations of T3 increased from 75 to 90 dpc
(Fig. 2A). In both breeds, there was a dramatic increase in
total T3 concentrations associated with birth, but total T3
levels steadily declined thereafter (Fig. 2B). MS boars had
30–40% greater total T3 levels compared with WC boars
during fetal life (Fig. 2A). From 1 to 7 dpp, WC boars had
up to twofold greater total T3 levels compared with MS
boars (Fig. 2B). Thereafter, breed differences were not
evident. Concentrations of free T3 in the circulation
exhibited similar patterns to total T3 (Fig. 3A and B).
However, a more marked decline in free T3 was observed
from 90 to 105 dpc in both breeds compared with total T3
(Fig. 3A).

Total T4 levels increased from 60 to 105 dpc in both
breeds, but breed differences were not observed (Fig. 4A).
Total T4 levels declined in both breeds from 105 dpc to
7 dpp, remaining steady thereafter. During early postnatal
life, MS boars had greater total T4 levels compared with
WC boars (Fig. 4A). Plasma concentrations of free T4
increased rapidly during late fetal life until 1 dpp in both
breeds, declining thereafter in both breeds (Fig. 4B).
Breed differences in free T4 levels were not observed at
any stage.

Fetal profiles of total T4 and T3 did not correlate with
profiles for TSH during this period of development (Fig.
5). However, elevated free T3 and T4 from 105 dpc

Figure 1 Triiodothyronine (T3) uptake ratio of Meishan (MS) and
White Composite (WC) boars during fetal and neonatal life. Data
are presented as least square means�S.E. **P<0·01; ***P<0·001.
dpc, days post coitum; dpp, days post partum; brd, breed.
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to 1 dpp were correlated with increased plasma TSH
during this time, with greater TSH levels in WC boars
corresponding to elevated free T3 and T4 levels compared
with MS boars at 1 dpp (Fig. 5). Whilst TSH levels
declined from 1 to 7 dpp remaining constant thereafter in
WC boars, paralleling the decline in T3 and T4, TSH
remained relatively constant during the late neonatal
period with a slight increase at 14 dpp in MS boars (Fig. 5).

Testosterone increased with advancing age in both
breeds, reaching maximal levels by 14 dpp in both breeds
(Fig. 6). Testosterone concentrations were not different
between breeds prenatally, but WC boars had greater
levels of testosterone compared with MS boars during the
early postnatal period (Fig. 6).

Immunolocalization

Thyroid hormone receptor �1 was present in the cyto-
plasm of Sertoli cells but not in germ cells and also in the
cytoplasm and nuclei of Leydig cells (Fig. 7A). THR�1
protein levels in both Sertoli and Leydig cells increased
from 75 to 90 dpc in both breeds followed by a decline
until 7 dpp, increasing again thereafter (Fig. 8A,B). Breed
differences in Sertoli cell THR�1 protein levels were not
detected, but MS boars tended to have increased Leydig

cell THR�1 protein levels compared with WC boars
throughout fetal and early postnatal life. THR�1 protein
levels were up to twofold greater in Leydig cells compared
with Sertoli cells throughout the study.

MIS protein was present in the cytoplasm of Sertoli cells
throughout development (Fig. 7B). Levels of MIS protein
steadily declined during late fetal and neonatal life in both
breeds (Fig. 9). Breed differences in MIS protein levels
were not detected prior to birth, however, at both 14 and
25 dpp, WC boars had greater levels of MIS compared
with MS boars (Fig. 9).

GATA4 protein was present in the nuclei of Sertoli cells
within the seminiferous tubules, peritubular cells sur-
rounding the tubules and Leydig cells of the interstitium,
but not in germ cells (Fig. 7C). Sertoli cell GATA4 protein
levels increased during fetal life to 90 dpc in both breeds,
declining thereafter until birth (Fig. 10). Following birth,
Sertoli cell GATA4 protein levels increased to 14 dpp in
both breeds, declining thereafter (Fig. 10). Sertoli cell
GATA4 protein levels did not differ between breeds, but
a breed�age interaction indicated a divergence in
GATA4 levels in favor of WC boars in postnatal life (Fig.
10).

P450c17 protein was present in Leydig cells of the
interstitium of the testis in both breeds throughout the

Figure 2 Concentration of total triiodothyronine (T3) in the
circulation (ng/ml) of Meishan (MS) and White Composite (WC)
boars during fetal (A) and neonatal (B) life. Data are presented
as least square means�S.E. *P<0·05; **P<0·01; ***P<0·001.
dpc, days post coitum; dpp, days post partum; brd, breed.

Figure 3 Concentration of free triiodothyronine (T3) in the
circulation (ng/ml) of Meishan (MS) and White Composite (WC)
boars during fetal (A) and neonatal (B) life. Data are presented
as least square means�S.E. *P<0·05; **P<0·01; ***P<0·001.
dpc, days post coitum; dpp, days post partum; brd, breed.
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period of study (Fig. 7D). P450c17 protein levels increased
from 75 to 90 dpc declining thereafter until birth in both
breeds. Following birth P450c17 protein levels were
elevated at 7 and 25 dpp but depressed at 14 dpp in both
breeds (Fig. 11). WC boars tended to have greater P450c17
protein levels compared with MS boars prenatally, but MS
boars had greater levels of P450c17 protein compared with
WC boars, notably at 7 dpp (Fig. 11).

Inhibin-� subunit was present in the cytoplasm of many
Leydig cells at 60 and 75 dpc but the number of cells
producing inhibin-� decreased thereafter (Fig. 7E). By
birth, inhibin-� protein was absent from Leydig cells (Fig.
7F). In contrast, inhibin-� protein was present at high
levels in the cytoplasm of Sertoli cells throughout the
period of study (Fig. 7E and F). Levels of inhibin-� protein
increased from 75 dpc to 7 dpp in both breeds, declined
thereafter in MS boars, but continued to increase with age
in WC boars (Fig. 12A). Meishan boars had greater levels
of inhibin-� at 7 dpp but lower levels by 25 dpp compared

with WC boars (Fig. 12A). Inhibin �A subunit was
present in the cytoplasm of Leydig and Sertoli cells and at
low levels in the cytoplasm of germ cells in both breeds
throughout the period of study (Fig. 7G). Sertoli cell
inhibin �A decreased from 60 to 90 dpc but increased
from 90 to 105 dpc in both breeds (Fig. 12B). From 105
dpc onward, Sertoli cell inhibin �A levels declined in both
breeds until 25 dpp (Fig. 12B), but breed differences were
not apparent at any stage throughout the study. Inhibin �B
subunit protein was present in the cytoplasm and nuclei of
both Leydig cells and Sertoli cells but was absent from
germ cells in both breeds (Fig. 7H). Sertoli cell inhibin �B
protein levels decreased from 60 to 90 dpc in both breeds,
followed by an increase until 105 dpc. A second increase at

Figure 4 Concentration of total thyroxine (T4) (A) and free T4 (B)
in the circulation (ng/ml) of Meishan (MS) and White Composite
(WC) boars during fetal and neonatal life. Data are presented as
least square means�S.E. dpc, days post coitum; dpp, days post
partum; brd, breed; NS, not significant.

Figure 5 Concentration of thyroid stimulating hormone (TSH) in
the circulation (ng/ml) of Meishan (MS) and White Composite
(WC) boars during fetal and neonatal life. Data are presented as
least square means�S.E. dpc, days post coitum; dpp, days post
partum; brd, breed; NS, not significant.

Figure 6 Concentration of testosterone in the circulation (ng/ml)
of Meishan (MS) and White Composite (WC) boars during fetal
and neonatal life. Data are presented as least square means�S.E.

*P<0·05. dpc, days post coitum; dpp, days post partum; brd,
breed; NS, not significant.
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14 dpp in both breeds was also observed (Fig. 12C), but
breed differences were not apparent.

Discussion

Thyroid hormones play a critical role in regulating the
growth, development, differentiation and metabolism of

virtually all tissues of higher organisms. In the rodent testis,
elevated T3 inhibits Sertoli cell mitosis, promotes differ-
entiation and accelerates tubular lumen formation (van
Haaster et al. 1993, Cooke et al. 1994) whilst transient
neonatal hypothyroidism prolongs the Sertoli cell pro-
liferative period by delaying Sertoli cell maturation, thus
leading to increased Sertoli cell number and testicular
size (Cooke & Hess 1992, van Haaster et al. 1992, Joyce
et al. 1993, Bunick et al. 1994, De Franca et al. 1996).
However, modification of thyroid hormone levels in rams
gives inconsistent results. Induction of hyperthyroidism
from 16–24 weeks reduces testis size at 30 weeks of age
(Chandrasekhar et al. 1985, 1986a) whilst hypothyroidism
during this time period has no effect on testicular size
(Chandrasekhar et al. 1985). In contrast, induction of
hyperthyroidism from 6–8 weeks increases testis size and

Figure 7 Brightfield photomicrographs of testes
immunohistochemically stained with molecular markers. (A)
Thyroid hormone receptor �1 localization in a Meishan testis at 90
days post coitum (dpc). (B) Müllerian inhibiting substance
localization in a White Composite testis at 105 dpc. (C) GATA4
localization in a White Composite testis at 25 days postpartum
(dpp). (D) P450c17 localization in a Meishan testis at 105 dpc. (E
and F) Inhibin alpha localization in a Meishan testis at 75 dpc (E)
and 105 dpc (F). Note the absence of inhibin alpha staining in the
interstitium of testes at 105 dpc. (G) Inhibin �A localization in a
White Composite testis at 75 dpc. (H) Inhibin �B localization in a
White Composite testis at 105 dpc. Red color depicts positive
staining. Sections are counterstained blue with hematoxylin to
visualize the tissue.

Figure 8 Densitometric values (arbitrary units) for THR�1 protein
levels in the Sertoli cells (A) and Leydig cells (B) of Meishan (MS)
and White Composite (WC) testes during fetal and neonatal life.
Data are presented as least square means�S.E. dpc, days post
coitum; dpp, days post partum; brd, breed; NS, not significant.
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advances puberty (Fallah-Rad et al. 2001). These obser-
vations indicate that the timing of thyroid hormone
manipulation in rams may be important, as observed in
rodents (Cooke & Hess 1992, van Haaster et al. 1992,
Joyce et al. 1993, Bunick et al. 1994, De Franca et al.
1996). In cattle, T3 and T4 are negatively correlated to
testicular volume (Majdic et al. 1998). Collectively, these
observations support a potential role for thyroid hormones
in testicular development.

In pigs, thyroid activity begins by mid gestation
(Slebodzinski & Brzezinska-Slebodzinska 1994). During
late gestation MS boars are hyperthyroid compared with
WC boars, having approximately 30–40% higher levels of
T3, the biologically active thyroid hormone, compared

with WC fetuses. Thyroid hormones, in particular T3,
exert their effects by interacting with an intra-nuclear
receptor (Samuels & Tsai 1973). The presence of thyroid
hormone receptors in a tissue provides an index of
thyroid responsiveness (Oppenheimer et al. 1974, 1976).
Substantial discrepancies exist in the literature regarding
the tissue- and cell-specific localization of THR isoforms.
It is reported that THR�1 is absent from the immature
testis in rats (Strait et al. 1991, Jannini et al. 1994, 1999)
and humans (Jannini et al. 2000) using RNase protec-
tion assay, Northern or immunofluorescence analysis.
However, Buzzard et al. (2000), using immunohistochem-
istry, reported low levels of THR�1 mRNA but abundant
THR�1 protein in immature Sertoli cells and in almost all
interstitial cells of the neonatal testis in rats. Similarly,
Palmero et al. (1995) detected THR�1 in Sertoli cells of
both rats and porcine testes using PCR, and Macchia et al.
(1990) localized THR�1 to the interstitium and germ cells
at the periphery of tubules. These studies indicate that
differential sensitivity of detection methods probably
account for discrepancies between studies in the tissue-
specific expression of THR. Similar discrepancies exist for
localization of THR� (Strait et al. 1991, Buzzard et al.
2000, Jannini et al. 2000). The present study is the first to
report immunolocalization of THR�1 in porcine testes,
confirming the previous localization of THR�1 in Sertoli
cells using PCR (Palmero et al. 1995). Immunodetection
of THR�1 in interstitial cells was unexpected as Palmero
et al. (1992) failed to detect nuclear binding of T3 in
porcine Leydig cells. During late gestation, levels of
THR�1 correlate better with high affinity binding of
thyroid hormone than does THR�1 (Murray et al. 1988,
Strait et al. 1991). Elevated levels of THR�1 in the
porcine testis during this time probably represents a time of
maximal responsiveness of the testis to thyroid hormones.

Figure 9 Densitometric values (arbitrary units) for Müllerian
inhibiting substance (MIS) protein levels in Sertoli cells of Meishan
(MS) and White Composite (WC) testes during fetal and neonatal
life. Data are presented as least square means�S.E. *P<0·05;
**P<0·01; ***P<0·001. dpc, days post coitum; dpp, days post
partum; brd, breed.

Figure 10 Densitometric values (arbitrary units) of GATA4 protein
levels in Sertoli cells of Meishan (MS) and White Composite (WC)
testes during fetal and neonatal life. Data are presented as least
square means�S.E. dpc, days post coitum; dpp, days post partum;
brd, breed; NS, not significant.

Figure 11 Densitometric values (arbitrary units) of P450c17
protein levels in Leydig cells of Meishan (MS) and White
Composite (WC) testes during fetal and neonatal life. Data are
presented as least square means�S.E. ***P<0·001. dpc, days post
coitum; dpp, days post partum; brd, breed.
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Thus, elevated levels of T3 during this period of develop-
ment in MS boars, coupled with increased THR�1
levels, provides a potential mechanism for ‘conditioning’
immature Sertoli cells.

Previous studies have highlighted the fact that in order
to achieve manipulation of testicular development by
thyroid hormone, treatment must be administered during
periods of maximal Sertoli cell proliferation (Cooke & Hess
1992, Meisami et al. 1992). Late gestation, a time when
MS boars are hyperthyroid compared with WC boars,
corresponds to the period of maximal Sertoli cell prolifer-
ation in the boar (McCoard et al. 2003 – companion
paper). Sertoli cell proliferation rates peak around 90 dpc
in both MS and WC boars (McCoard et al. 2003 –
companion paper), corresponding to elevated levels of
circulating free T3 and THR�1, indicating an association
between thyroid hormone and Sertoli cell proliferation in
the porcine testis. Subsequent reduction in testicular
THR�1 protein levels corresponds with the decline in the
rates of Sertoli cell mitosis (McCoard et al. 2003 –
companion paper), further supporting a link between
thyroid hormone and Sertoli cell proliferation in boars.
Further, transient fetal hyperthyroidism in MS boars is
associated with decreased Sertoli cell proliferation by 14
dpp and enhanced tubule size by 25 dpp, indicative of
early maturation of Sertoli cells (McCoard et al. 2003 –
companion paper).

Down-regulation of MIS, a member of the TGF�
family, is an early sign of testicular maturation in boars
(Tran et al. 1981) and humans (Baker & Hutson 1993,
Rey et al. 1993). A decline in MIS protein levels in MS
boars during early postnatal life compared with WC boars
in the present study is consistent with decreased Sertoli cell
proliferation and early maturation of Sertoli cells in this
breed. Similarly, elevated MIS protein levels in WC
compared with MS boars during neonatal life is consistent
with prolonged MIS expression and delayed Sertoli cell
maturation following transient neonatal hypothyroidism in
rats (Bunick et al. 1994). Further, adult MS boars have
a reduced complement of Sertoli cells, consistent with a
reduced proliferative period, and reach puberty earlier
compared with occidental breeds (Lunstra et al. 1997),
consistent with advanced puberty in rams following tran-
sient neonatal hyperthyroidism (Fallah-Rad et al. 2001).
Collectively, these observations indicate the potential for
thyroid hormone to impact on testicular development and
onset of puberty in boars.

The substantial increase in T3 observed around birth is
probably due to preparation for the thermal challenge after
birth, as newborn pigs lack brown adipose tissue and do
not react metabolically to noradrenaline (Le Blanc &
Mount 1968), thus relying on thyroid hormone control of
thermoregulation (Slebodzinski 1979, 1988). Substantially
elevated hepatic and kidney 5�-monodeiodinase type 1
activity, the enzyme that converts T4 to T3, during late
gestation in the pig supports this physiological event

Figure 12 Densitometric values (arbitrary units) of inhibin alpha
(A), inhibin �A (B) and inhibin �B (C) protein levels in seminiferous
tubules of Meishan (MS) and White Composite (WC) testes during
fetal and neonatal life. Data are presented as least square
means�S.E. *P,0·05. dpc, days post coitum; dpp, days post
partum; brd, breed; NS, not significant.
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(Slebodzinski & Brzezinska-Slebodzinska 1994). Whilst a
twofold difference in T3 levels between breeds is apparent
from 1 to 7 dpp, T3 is unlikely to be associated with Sertoli
cell proliferation during this time as receptor levels for both
breeds are low indicating reduced responsiveness of tes-
ticular tissue to thyroid hormone during this time. Sertoli
cell proliferation is also declining during this time period
(McCoard et al. 2003 – companion paper).

TBG is the major transport protein for thyroid hor-
mones and thus has the potential to alter tissue availability
of thyroid hormones. TBG is located within the QTL
region for testis size on the X-chromosome (Rohrer et al.
2001, McCoard et al. 2002a) and is thus a potential
candidate factor for regulation of testicular size. While total
T4 levels were greater in MS than WC boars during early
postnatal life, circulating levels of free T4 were not
different between breeds, probably resulting from elevated
TBG concentrations (decreased T3 uptake) in MS com-
pared with WC boars. Similarly, total T3 concentrations
from 90 to 105 dpc are similar, while circulating levels of
free T3 decline from 90 to 105 dpc, a time of elevated
TBG concentration. Profiles of T3 uptake exhibit a similar
pattern to Sertoli cell proliferation during fetal life.
Elevated T3 uptake at 90 dpc corresponds to decreased
TBG levels, consistent with elevated levels of circulating
free T3 during this phase of development. These obser-
vations indicate a potential role for TBG in the regulation
of circulating levels of free thyroid hormone, and a possible
link between TBG and testicular development in the boar.
Potential TBG regulation of site-specific release of thyroid
hormone via proteolytic cleavage of TBG (Schussler 2000)
cannot be discounted. Since more than two thirds of the
circulating thyroid hormone is bound by TBG, proteolytic
cleavage of TBG could potentially allow substantially
greater site-specific release of thyroid hormone than is
available from free thyroid hormone. Thus, increased
TBG in MS boars during late fetal life provides a potential
mechanism to increase thyroid hormone availability to the
testis. Further studies will be required to test these
hypotheses.

A wide array of molecular markers is expressed during
testicular development. Modification of testicular develop-
ment, such as by induced hypothyroidism (Bunick et al.
1994) can alter expression patterns of these markers.
GATA4 is a member of the GATA family of transcription
factors expressed in the gonads (Heikinheimo et al. 1997,
Viger et al. 1998, Ketola et al. 1999, McCoard et al.
2001a,b), and plays an important role in the transcriptional
activation of numerous target genes (Tremblay & Viger
2001) including MIS (Viger et al. 1998, Tremblay & Viger
1999), inhibin �B (Feng et al. 2000), inhibin-� (Ketola
et al. 1999, Feng et al. 1998) and the steroidogenic acute
regulatory protein (StAR) (Silverman et al. 1999). In the
present study, GATA4 protein levels were upregulated in
Sertoli cells of the boar testis during the period of maximal
Sertoli cell proliferation (�90 dpc), consistent with obser-

vations in the human testis (Ketola et al. 2000) indicating
a potential role in Sertoli cell development in the boar.
GATA4 protein levels also exhibit similar patterns com-
pared with THR�1 levels (tubules and interstitium)
indicating a potential relationship between these two
molecular markers during testicular development.

Inhibin produced by the testis regulates FSH secretion
from the pituitary. Both inhibin and activin have been
reported to influence cell proliferation, apoptosis and
differentiation in many systems (de Jong 1988). Inhibin
subunits can act as paracrine factors in the gonads and are
expressed during fetal life in many species including
humans (Eramma et al. 1992, Roberts 1997), rodents
(Roberts et al. 1989, Shaha et al. 1989, Roberts & Barth
1994), monkeys (Rabinovici et al. 1991), sheep (Jarred
et al. 1999), and cattle (Torney et al. 1990). Until now,
testicular localization of inhibin subunits in boars was
uncharacterized. Consistent with observations in the fetal
sheep testis (Jarred et al. 1999), Sertoli cells in the boar
testis produce all inhibin subunits during fetal and early
postnatal life indicating the potential to produce all forms
of inhibin and activin. In contrast, down-regulation of
inhibin-� in Leydig cells during fetal development indi-
cates that while Leydig cells can produce both inhibins and
activins during fetal life, they are unable to synthesize
inhibins during postnatal development. Inhibin sub-
unit levels do not correlate well with circulating FSH
(McCoard et al. 2003 – companion paper), or patterns of
Sertoli cell proliferation, further indicating that elevated
gonadotropins are unlikely regulators of Sertoli cell pro-
liferation in boars. However, Sertoli cell inhibin-� subunit
levels decline from 7 dpp onward in MS boars, corre-
sponding to early Sertoli cell maturation in this breed of
pig, suggesting a potential paracrine role for inhibin-� in
the boar testis.

During neonatal life, WC boars exhibit a greater peak in
testosterone secretion at 14 dpp compared with MS boars,
consistent with other studies (Lunstra et al. 1997, Franca
et al. 2000). Breed differences in testosterone secretion are
associated with substantial breed differences in interstitial
tissue growth during this time period (McCoard et al.
2003 - companion paper). In contrast, Leydig cell P450c17
protein levels, the enzyme that catalyzes conversion of
progesterone to androstenedione, are greater in MS
than WC boar testis during neonatal life, indicating
differential enzymatic steroidogenic activity of the testis.
The second wave of Leydig cell development occurs from
approximately 75 dpc to 1 month of age in boars (van
Vorstenbosch et al. 1984). Thus, differential levels of
P450c17 probably indicate enhanced Leydig cell develop-
ment during early neonatal life in MS boars, perhaps in
preparation for early onset of puberty in this breed (Lunstra
et al. 1997).

In summary, transient hyperthyroidism in MS boars
during mid to late gestation corresponds to the stage of
development when Sertoli cell proliferation is maximal
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and the testis is highly responsive to thyroid hormone,
providing a mechanism for thyroid hormones to impact
Sertoli cell development. Subsequent decline in prolifer-
ation rate and early down-regulation of MIS expression,
coupled with increased seminiferous tubule diameter,
signal early maturation of Sertoli cells, consistent with early
onset of puberty in this breed. These observations indicate
a possible role for thyroid hormones in the regulation of
growth and differentiation of the boar testis via direct
action on Sertoli cells. We cannot rule out the possibilty
that differences in thyroid status may, in part, be correlated
with differences in the rate of sexual maturity, body
composition etc. that exists between these diverse genetic
lines of pigs (Stone et al. 1985, Herpin et al. 1993, White
et al. 1995).
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